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Summary. — In order to predict the equilibrium phase behaviour of colloidal
particles, one should first identify the “candidate” structures in which the particles
may assemble. Subsequently, the free energy of the candidate structures should be
determined to establish the thermodynamically stable phases and to map out the
bulk phase diagram. Here, we describe a simple method based on a simulated an-
nealing approach to predict candidate structures and several techniques to calculate
the free energy of a thermodynamic system and to map out the phase diagram.
Exemplarily, we present phase diagrams of several shape-anisotropic hard particles,
e.g., hard dumbbells, hard bowl-shaped particles, and hard oblate spherocylinders.

1. – Introduction

Colloidal suspensions consist of mesoscopic particles with sizes in the range of a few
nanometers to a few micrometers, which are dispersed in a fluid medium. Colloidal par-
ticles are larger than solvent molecules, but small enough to undergo Brownian motion.
This highly irregular movement of the suspended particles, named after the Scottisch
botanist Robert Brown, is caused by the constant bombardment of the solvent molecules
onto the colloidal particle surfaces. Brownian motion allows particles to explore phase
space and to self-assemble into equilibrium structures, such as three-dimensional ordered
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crystal phases, liquid crystalline phases, and disordered liquids. However, they can also
form non-equilibrium structures like glasses or gel-like structures. Colloidal systems be-
have similarly to ordinary atomic and molecular systems, and can serve as important
model systems for condensed matter physics. Studies of colloidal suspensions have in-
deed provided us with a wealth of insight into physical phenomena such as melting,
(de)mixing, freezing, nucleation, glass transitions, gelation, and structure formation, ei-
ther spontaneous or externally driven by templates, gravity, or electric fields. Moreover,
the much larger size of colloids compared to atoms allows for an unprecedented degree
of manipulation, visualization, and control.

More importantly, recent advances in the chemical synthesis and fabrication of col-
loidal particles have resulted in a spectacular variety of new colloidal building blocks [1,2]
including a huge number of shape-anisotropic particles such as rods [3-5], plates [6], col-
loidal molecules [7, 8], bead chains, dumbbells [9], hollow objects, microcapsules, patchy
particles, cubes [10-14], superballs [15, 16], octahedra [13, 14, 17, 18], tetrahedra [19, 20],
octapods [21-23], tetrapods [24,25], nanostars [26-28], and colloidal caps [29-31].

The main challenge now is to exploit this huge variety of available colloidal building
blocks and to self-assemble them into structured arrangements for advanced and func-
tional materials and devices. The fabrication of these so-called “nanomaterials” with a
well-defined structure on the scale of tens to hundreds of nanometers, makes these mate-
rials perfectly suited for the manipulation of (visible) light. Hence, colloidal crystals with
lattice spacings similar to the wavelength of light are considered to be prime candidates
for the fabrication of photonic band-gap materials [32-35] with potential applications in
highly efficient light-emitting diodes (LEDs), solar cells, sensors, and optical computer
chips. Additionally, nanomaterials with the right properties are likely to be instrumental
in the development of new photovoltaic cells [36,37] and electronic displays [38,39]. The
potential use of the spontaneous self-organisation of colloids as a promising and inherent
cheap route for the fabrication of nanostructures requires not only the ability to tune the
properties of the colloidal building blocks, but also a better understanding of the relation
between the building blocks, their interactions, and the self-assembled structures.

Additionally, the tunability of the effective interactions between the colloidal parti-
cles offer great opportunities. To be more specific, colloidal particles with anisotropic
interactions can be synthesized by controlling the shape of the particles, or by creating
“patches” on the surface of the particles. The interactions between the particles can also
be altered by modifying the dispersive medium, i.e., addition of salt to the dispersion
leads to screening of the electrostatic interactions, the presence of non-adsorbing poly-
mer results in effective depletion attractions, and critical Casimir forces arises due to the
confinement of long-range density fluctuations when the host fluid is close to a critical
point. One can further modify the interaction by application of, e.g., external electric
and magnetic fields, templates, gravity, etc.

Exploiting the self-assembly of these novel colloidal building blocks calls for theoretical
tools to predict the structure and phase behavior of these particles. Predicting the
equilibrium phase behaviour of colloidal particles can be divided into three parts: i) First,
one should identify the possible “candidate” structures in which the particles with given
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interactions and system parameters may assemble, ii) subsequently, the free energy of the
identified candidate structures should be determined to establish the thermodynamically
stable phases and to map out the full equilibrium phase diagram, and iii) finally, one
should investigate the kinetic pathways to form the thermodynamically stable phases,
as the self-assembly may be suppressed by kinetic effects such as vitrification, gelation,
defects and stacking faults. Below, we briefly describe an efficient simulation method
to predict candidate structures and several techniques to calculate the free energy of a
system. A natural starting point to study the self-assembled structures of these shape-
anisotropic colloidal building blocks is to view them as hard particles [1]. Not only can
these hard-particle models be used to predict properties of suitable experimental systems,
but such models also provide a stepping stone towards systems where soft interactions
play a role [40,41]. Additionally, the analysis of hard particles is of fundamental relevance
and raises problems that influence fields as diverse as (soft) condensed matter [1,35,42,43],
mathematics, [42, 44] and computer science [45]. The concurrent boom in simulation
studies of hard anisotropic particles is thus not surprising [42-44, 46-54]. In the last
section, we present several phase diagrams of shape-anisotropic hard particles that have
been determined using free-energy calculations in Monte Carlo simulations.

2. – Predicting candidate crystal structures

Predicting the structures that will be formed is vital for exploiting self-assembly and
a major computational challenge. In a recent Review article, Woodley and Catlow [55]
claimed “The prediction of structure at the atomic level is one of the most fundamental
challenges in condensed matter science”, and Maddox stated in a News and Views Nature
article [56] “One of the continuing scandals in the physical sciences is that it remains in
general impossible to predict the structure of even the simplest crystalline solids from a
knowledge of their chemical composition”. Hence, it is not surprising that the subject of
crystal structure prediction has received much attention from the scientific community
over the last several decades. The question itself is deceivingly simple: assuming that
the underlying interactions between constituent particles are known, which crystal struc-
tures are stable? Conventional methods are often based on a pre-selection of candidate
structures for which the (free) energies are calculated to determine the thermodynami-
cally most stable phase. The pre-selection of structures relies heavily on intuition, trial
and error, and experience. A serious drawback of the pre-selection is that it immedi-
ately rules out all non-selected structures at the very beginning, which might include the
stable equilibrium structures. Hence, it is expected that this pre-selection strategy fails
dramatically for the new anisotropic colloidal building blocks for which novel and more
exotic structures are envisaged.

In 1990, Pannetier et al. proposed a method based on simulated annealing tech-
niques [57]. In their method a general crystal structure was described in terms of lattice
and basis vectors, and the “cost” function for the system was minimized using simulated
annealing. The method can easily be extended to any atomic system for which a suit-
able cost function, e.g., the potential energy, can be constructed [58]. Recently, more
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advanced minimization techniques such as genetic algorithms [59-61] and Monte Carlo
(MC) basin hopping algorithms [62] have been applied. Typically these techniques are
used to locate the minimum potential energy of the system, and as such, probe the zero-
temperature phase behavior. However, for systems where the entropy plays a significant
role, these techniques break down. For instance, new crystal structures can appear in
the phase diagram at finite temperature, which are different from the zero-temperature
crystal structures, and hence predicting the zero-temperature structures will not be suf-
ficient for making predictions at finite temperature. Additionally, for hard systems the
potential energy is always zero as only non-overlapping configurations contribute to the
partition function, and crystal structures are thus stabilized by entropy alone. For such
systems it is difficult to construct an appropriate cost function, and therefore the MC
basin hopping algorithm and genetic algorithms cannot be applied to hard-core systems.

Recently, Filion et al. proposed an efficient simulation method, which is based on a
simulated annealing approach, to predict crystal structures at finite temperatures and
finite pressures for a wide variety of systems, including hard-core systems whose phase
behavior is purely entropy-driven [63]. This method was applied to spheres with different
types of interactions such as hard, attractive, anisotropic interactions, semi–long-range
soft interactions, truly long-range interactions using Ewald sums [63], and patchy inter-
actions [64]. Additionally, the algorithm was applied to predict the best packing of a
huge variety of shape-anisotropic particles [65]. This technique is similar in approach to
the metadynamics method [66], but uses compression from the fluid phase and Monte
Carlo (MC) sampling in a variable simulation box to determine candidate structures.
This technique, also referred to as the “floppy-box” Monte Carlo (FBMC) method, has
proven to be remarkably efficient and robust, and has led to the discovery of an astonish-
ing variety of new crystal structures for a wide range of systems, thereby demonstrating
its effectiveness for the novel colloidal building blocks that have become available exper-
imentally [63-65].

The FBMC algorithm is an ordinary isothermal-isobaric (NPT ) ensemble Monte
Carlo (MC) simulation with three important features that makes it an efficient tool
to predict candidate structures. First, the number of particles N is small, typically
1 ≤ N ≤ 12. Second, the three lattice vectors �L comprise the simulation box and are
allowed to vary independently of each other in both their length and orientation. As in
a standard NPT -MC simulation, each MC cycle consists of a trial move to displace a
particle and a trial move to change the volume of the simulation box where the acceptance
rules of the particle and volume moves are given by the Metropolis algorithm [67]. In
order to allow for box shape fluctuations, a trial volume move involves an attempt to
change the orientation and the length of a random lattice vector. This is the origin of the
term “floppy box”, which was adopted to emphasize that the box does not have a fixed
shape. We also remark that the FBMC method is similar to other variable-box-shape
methods [66, 67, 44], and note that an NPT variable-box shape simulation is essentially
an isothermal-isotension simulation with a fixed isotropic stress tensor, that is directly
proportional to the pressure [67]. Third, to predict candidate structures the simulation
is preceded by a compression from a disordered fluid phase. To this end, the initial
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pressure is chosen to be below the fluid to solid transition and the pressure is increased
incrementally until the system solidifies. An essential feature of the FBMC method is
that due to the small number of particles and the variable box shape, the simulation box
essentially acts as a “unit cell” for the crystal structures. However, working with small
simulation boxes, and allowing the shape of the simulation box to fluctuate introduces
new problems. The main problem is that while the system is in the fluid phase, the shape
of the box fluctuates significantly. Thus, the box can become extremely distorted, which
makes the potential energy summation time consuming. To avoid this problem, one may
use the lattice reduction technique described in ref. [61] to redraw the unit cell when
it becomes too distorted. Additionally, one can impose a restriction on all angles and
lengths of the lattice vectors to avoid trivial unphysical crystal structures. For instance,
one may exclude angles less than 30◦ and greater than 150◦. Without these restrictions
the particles tend to line up in columns, such that the particles only interact with their
own periodic images in one of the lattice directions resulting in unphysical contributions
to the entropy. Such a condition prevents the box (particularly while in the fluid phase)
from an extreme distortion, while allowing for all possible crystal phases to emerge in
the FBMC simulations. Finally, to effectively predict candidate crystal structures it is
necessary to perform FBMC simulations for the same system many times with different
random seeds, starting configurations, initial conditions, compression paths, etc. This
usually results in a set of candidate crystal structures for which the frequency of occurence
in the FBMC runs gives some insight in the stability of the structures [63]. In order to
determine quickly whether or not a candidate structure is mechanically stable, one may
perform a simulation of such a structure with a much larger system size (∼ 1000–10000
particles) than employed in the FBMC method. If the candidate structure deforms
into another crystal structure or melts into a fluid phase, the candidate structure is
thermodynamically unstable. However, we stress that only free-energy calculations can
demonstrate conclusively the thermodynamic stability of candidate structures.

3. – Free-energy calculations and phase diagrams

The aforementioned FBMC method and alternative algorithms can be employed to
predict candidate crystal phases for a given system. Subsequently, the predicted struc-
tures can be used in free-energy calculations to determine the thermodynamically most
stable phases and to map out the bulk phase diagram. Below, we describe in more detail
how the free energy can be calculated in Monte Carlo simulations using the thermody-
namic integration technique. In this method, one constructs a reversible path that links
the system of interest to a reference system for which the free energy is known. However,
the free energy is known explicitly for only a few systems. To compute the Helmholtz free
energy of a dense fluid, one may construct a reversible path from the system of interest to
the ideal gas phase. However, for a solid, a direct path to the ideal gas without crossing
a phase transition is usually not possible, and one often employs the Einstein crystal as
a reference state.
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3.1. Fluid phase. – The Helmholtz free energy for the fluid phase can be determined
by integrating the equation of state (EOS), i.e., the pressure as a function of density
P (ρ) with ρ = N/V the number density, N the number of particles, and V the volume.
To this end, one constructs a reversible path to an infinitely dilute gas phase. The EOS
of the fluid phase can be obtained by employing standard NPT Monte Carlo simulations
and measuring the averaged density ρ for a range of pressures P . The Helmholtz free
energy F of the fluid phase is then determined by

(1)
βF (ρ)

N
=

βF id(ρ)
N

+
∫ ρ

0

(
βP (ρ′) − ρ′

ρ′2

)
dρ′,

where β = 1/kBT , kB equals Boltzmann’s constant, T the temperature, βF id(ρ) =
N log[ρΛ3] − N is the free energy of an ideal gas at density ρ, Λ = (h2/2πmkBT )1/2

denotes the de Broglie wavelength, m the mass of the particle, and h Planck’s constant.
Alternatively, one can also construct a reversible path to a fluid phase at density ρ0 for
which one can compute the chemical potential μ(ρ0) using Widom’s particle insertion
method [67]. Using μ(ρ0) and P (ρ0), it is straightforward to determine the Helmholtz
free energy F (ρ0)/N = μ(ρ0) − P (ρ0)/ρ0 at density ρ0 [67]. The Helmholtz free energy
F (ρ) at density ρ can then be obtained by integrating the equation of state:

(2)
βF (ρ)

N
=

βF (ρ0)
N

+
∫ ρ

ρ0

(
βP (ρ′)

ρ′2

)
dρ′.

We note that this thermodynamic integration route is not restricted to the fluid phase,
but can also be employed for a solid, liquid crystalline, or any other phase.

3.2. Crystal phase. – The Helmholtz free energy F of a crystal phase can be calculated
using the Frenkel-Ladd method [68]. Here, one constructs a reversible path from the
crystal of interest to a non-interacting Einstein crystal for which one can calculate the
free energy exactly. In the Einstein crystal, the center-of-mass of the particles are fixed
to their ideal lattice positions using harmonic springs in such a way that the particles do
not interact with each other. The lattice positions of the Einstein crystal should resemble
the equilibrium positions of the particles in the crystal phase of interest. The equilibrium
position for each particle can be obtained by averaging the instantaneous positions of
the particles in a simulation of the crystal structure. Using the Einstein crystal as a
reference state, the next step is to construct a reversible path from the crystal phase to the
Einstein crystal without crossing a first-order phase transition. For a system of particles
that interacts via hard-core potentials, one can switch on the harmonic springs, while
keeping the hard-core interactions between the particles. To this end, one introduces the
auxiliary Hamiltonian

(3) βH(rN ;λ) =
N∑

i<j

βφhc(ri, rj) + λ

N∑
i=1

(ri − ri,0)2

σ2
,

where ri is the center-of-mass position of particle i, ri,0 is the ideal lattice position of
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particle i, λ is the dimensionless spring constant or coupling parameter, σ the size of
the particle, which is taken to be the unit of length, and φhc(ri, rj) is the hard-core
interaction between particle i and j. The usual thermodynamic integration path for
hard particles consists of a gradual increase of λ from 0 (the system of interest) to λmax.
For sufficiently high λmax, the particles are bound so strongly to their lattice sites that
they do not feel each other, and the system reduces to a non-interacting Einstein crystal.
Consequently, the free energy of the crystal phase F (N,V, T ) is then given by

(4) βF (N,V, T ) = βFEinst(N,V, T ) −
∫ λmax

0

dλ

〈
∂βF

∂λ

〉
,

where the free energy of the ideal Einstein crystal FEinst(N,V, T ) with the center-of-mass
correction terms reads [67]:

(5) βFEinst(N,V, T ) = −3(N − 1)
2

ln
(

π

βλmax

)
+ N ln

(
Λ3

σ3

)
+ ln

(
σ3

V N1/2

)
.

The integrand 〈∂βF/∂λ〉 =
〈 ∑N

i=1(ri − r0,i)2/σ2
〉

in eq. (4) can be calculated in an MC
simulation of a system that is described by the Hamiltonian (3) for fixed values of λ in
the range λ ∈ [0, λmax] with the constraint that the center-of-mass of the solid is fixed in
order to avoid an unwanted drift of the solid in the limit λ → 0.

If we consider anisotropic particles rather than spherical particles, the crystal phase
possess internal degrees of freedom in addition to translational degrees of freedom. In this
case, each particle i possess d configurational degrees of freedom, which we denote by a
d-dimensional vector qi. For spherical particles in three spatial dimensions, each particle
i is described by the center-of-mass position, yielding qi ≡ ri, and the number of degrees
of freedom equals d = 3. Uniaxial anisotropic particles can be characterized by a unit
vector û to denote the orientation of the symmetry axis, and possess two orientational
degrees of freedom in addition to the translational degrees of freedom, which yields
d = 5. Anisotropic particles without any axes of symmetry have three rotational degrees
of freedom and should be described by two perpendicular unit vectors or in terms of the
three Eulerian angles (θ, φ, χ), resulting in d = 6. As a consequence, the crystal phase of
anisotropic particles exhibits internal degrees of freedom in addition to the translational
degrees of freedom, which may give rise to a wide variety of new crystal phases. However,
for crystal structures consisting of anisotropic particles, the thermodynamic integration
route as discussed above may fail as the system will never reach the limit of a non-
interacting Einstein crystal due to the orientational degrees of freedoms of the hard-core
particles. Below, we describe two methods to construct a reversible path from a crystal
phase consisting of anisotropic particles to a non-interacting Einstein crystal.

3.3. Plastic crystal phases. – For crystal structures consisting of freely rotating aniso-
tropic particles, so-called plastic crystal or rotator phases, the thermodynamic integration
method (4) may fail if the system remains interacting due to particle rotations for infinite



236 M. Dijkstra

values of the spring constant λ. The Einstein integration method can then be combined
with an additional thermodynamic integration path, which changes gradually the hard-
core system into a non-interacting system. To this end, one approximates the hard-
particle potential φhc(qi,qj) by an penetrable interaction potential ϕ(i, j), where we use
the shorthand notation ϕ(i, j) = ϕ(qi,qj). the translational and orientational degrees of
freedom of particle i are denoteb by qi. The Hamiltonian is now given by

(6) βH(qN ;λ, γ) = γ

N∑
i<j

βϕ(i, j) + λ

N∑
i=1

(ri − ri,0)2

σ2
,

where

(7) βϕ(i, j) =

{
1 − Aζ(i, j) 0 ≤ ζ(i, j) < 1,

0, otherwise,

with γ the integration parameter and A an adjustable parameter, which is kept fixed
during the simulation at a value of, say A = 0.9 [69]. In the limit γ → ∞ the pair
potential reduces to the hard-core interaction, but convergence of the thermodynamic
integration is often already obtained for lower values of γmax. This method allows us thus
to change gradually from a non-interacting system, γ = 0, to a crystal phase of (freely
rotating) hard particles when γmax is sufficiently high. In order to minimize the error
and maximize the efficiency of the free-energy calculation, the penetrable potential ϕ(i, j)
must decrease if the volume with which the particles overlap decreases and the potential
must exhibit a discontinuity when the particles are just at contact [69]. In this case, the
amount of overlap and the number of overlaps decrease smoothly upon increasing γ. To
achieve this, one defines ζ(i, j) in such a way that it is zero, when particles i and j are
fully overlapping, and one when particles i and j are just at contact. This thermodynamic
integration path was introduced in ref. [69] for hard spheres, and subsequently extended
to hard dumbbells and hard superballs in refs. [53, 70]. For hard spheres with diameter
σ, one may use ζ(i, j) = (rij/σ)2, which is zero when the two spheres are at center-of-
mass distance rij = |ri − rj | = 0 and thus right on top of each other, and one when
the particles are just at contact, i.e. rij = σ. A similar approach was employed for hard
dumbbells, where the individual spheres of each dumbbell interact with this penetrable
pair potential. In the case of superballs, one may take ζ(i, j) to be equal to the scaling
factor with which the size of particle i and j should be scaled uniformly to bring the
particles just in contact provided the original positions and orientations are kept fixed.
With this choice, one finds again that for fully overlapping particles, ζ(i, j) = 0 as the
particle sizes should be scaled by 0 to remove the overlap, and ζ(i, j) = 1 when the
particles are just at contact.

In order to obtain the Helmholtz free energy of the crystal phase, one has to integrate
over both paths to determine the free energy difference between the system of interest
and the non-interacting Einstein crystal. Starting at a very high value of γmax where the
particles behave as hard particles, one can turn on the springs that couple the particles
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to their respective lattice positions by increasing λ from 0 to λmax. Subsequently, one
can then decrease γ from γmax to 0 such that the system reduces to an ideal Einstein
crystal. The Helmholtz free energy F of the crystal is then obtained by integrating over
both paths

(8) βF (N,V, T ) = βFEinst(N,V, T ) −
∫ λmax

0

dλ

〈
∂βF

∂λ

〉
γmax

+
∫ γmax

0

dγ

〈
∂βF

∂γ

〉
λmax

,

where 〈∂βF/∂λ〉 =
〈 ∑N

i=1(ri − r0,i)2/σ2
〉

and 〈∂βF/∂γ〉 = 〈
∑N

i<j βϕ(i, j)〉. We note
that for particles with dr rotational degrees of freedom, the Helmholtz free energy of
an non-interacting Einstein crystal (5) includes an extra term

∑dr

k=1 N lnVk due to the
integration over the angular momenta [71]. Here Vk = (h2/2πIkkBT )1/2 and Ik is the
corresponding moment of inertia.

3.4. Orientationally ordered crystal phases. – For crystal structures consisting of
anisotropic particles that display orientational order, one may add an aligning poten-
tial that fixes the orientations of the particles to the orientations of the ideal crystal
lattice in order to reach the non-interacting Einstein crystal [72]. Using the same cou-
pling constant λ that attaches the particles to their lattice sites, the Hamiltonian is now
given by

(9) βH(qN ;λ) = λ

N∑
i=1

[
(ri − ri,0)2

σ2
+ sin2 ψi,a + sin2 ψi,b

]
,

where the angles ψi,a and ψi,b are the minimum angles between the orientation of particle
i and the respective orientations, say a and b, of particle i in the ideal crystal lattice.
The coupling parameter λ controls the strength of both external potentials; hence for
λ = 0 the system reduces to the crystal structure of interest, and for λ = λmax with
λmax sufficiently large, the system reduces to a non-interacting Einstein crystal. The
Helmholtz free energy of the crystal phase can then be obtained using eq. (4) with
〈∂βF/∂λ〉=

〈 ∑N
i=1(ri − r0,i)2/σ2 + sin2 ψi,a + sin2 ψi,b

〉
. The Helmholtz free energy of

the non-interacting Einstein crystal FEinst reads

βFEinst(N,V, T ) = −3(N − 1)
2

ln
(

π

βλmax

)
+ N ln

(
Λ3

σ3

)
(10)

+
dr∑

k=1

N lnVk + ln
(

σ3

V N1/2

)

−
N∑

i=1

ln
{

1
8π2

∫
exp

[
−λmax(sin2 ψi,a + sin2 ψi,b)

]
sin θdθdφdχ

}
,

where the latter term is the free energy due to the aligning field, which can be esti-
mated numerically by integrating the respective partition function over all the particle
orientations described by the Eulerian angles θ, φ, and χ.
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Fig. 1. – The free-energy density f = F/V versus the density ρ, showing the existence of
a symmetry-conserving gas-liquid transition at low densities and a symmetry-breaking liquid-
solid transition at higher densities. Schematic illustration of the common tangent construction
to determine phase coexistence.

3.5. Mapping out phase diagrams. – In order to establish the thermodynamic sta-
ble phases and to determine the equilibrium phase diagram, one should first determine
the Helmholtz free energy F (N,V, T ) of the identified candidate phases using the ther-
modynamic integration techniques as discussed above. Since F is an extensive quan-
tity for macroscopically large N and V , it is convenient to define a free-energy density
f(ρ, T ) = F/V . Both the pressure and the chemical potential are important quantities
in the determination of phase boundaries at first-order transitions. The pressure P is
given by P (ρ, T ) = −(∂F/∂V )N,T = −f +ρ(∂f/∂ρ)T and the chemical potential μ reads
μ(ρ, T ) = (∂F/∂N)V,T = (∂f/∂ρ)T . The conditions for coexistence of phase I and phase
II with densities ρI and ρII are thermal equilibrium TI = TII , mechanical equilibrium
PI(ρI) = PII(ρII) and chemical equilibrium μI(ρI) = μII(ρII). Invoking these two
conditions at fixed temperature yields

(11)
∂f

∂ρ

∣∣∣∣
ρI

=
∂f

∂ρ

∣∣∣∣
ρII

=
f(ρII) − f(ρI)

ρII − ρI
.

Geometrically this representation corresponds to the so-called common tangent construc-
tion for determining ρI and ρII . This is illustrated in fig. 1, where we plot schematically
f(ρ) for a symmetry-conserving gas-liquid transition at low densities and a symmetry-
breaking liquid-solid transition at higher densities. The physical interpretation of the
common tangent construction, denoted by the red solid lines in fig. 1, shows that the
system can lower its free energy by forming a linear combination of two coexisting phases.
Finally it is straightforward to show that adding terms to F which are linear in ρ, does
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not affect the values of the bulk coexistence densities. The common tangent construction
can be made with or without these linear terms in ρ.

4. – Nucleation, gelation, and glass transition

Whether or not the thermodynamically stable crystal phase will actually be formed
depends also on kinetic effects. The crystallization may be suppressed by vitrification
or gelation, and may suffer from defects, such as stacking faults and vacancies. It is
therefore important to study also the kinetics, nucleation rates, and the pathways for
the spontaneous formation of nuclei that can grow into the thermodynamically stable
phase. Additionally, one may facilitate the formation of the ordered phases by employing
external fields, like electric or magnetic fields, gravity, templates, interfaces, fluid flow,
etc. This is a very active field, but outside the scope of this lecture.

5. – Phase diagrams of shape-anisotropic hard particles

The methods as described in sects. 2 and 3 can be employed to determine the phase
behavior of (colloidal) systems. To illustrate this, we present various phase diagrams
that have been determined recently using these techniques for hard anisotropic particles.
We emphasize that we focus here on phase diagrams based on free-energy calculations
instead of identifying the phases that appear in direct simulations. The danger of direct
simulations is that systems can get trapped in non-equilibrium structures, like gels and
glasses, or in metastable ordered structures. The formation of glasses and gels, and
metastable structures depends often on the history of the sample, such as the initial
conditions, dynamics, etc. Consequently, a direct approach may yield conflicting results.
Moreover, for phase transitions that involve large density jumps between the coexisting
phases, simulation results may suffer from finite size effects due to bulk and interfacial
contributions to the free energy.

5.1. Anisotropic hard particles. – An enormous amount of work has been devoted
over the last decades on phase diagram calculations of anisotropic hard particles, such
as spherocylinders, ellipsoids, cubes, cut spheres, oblate hard spherocylinders, dumb-
bells, polyhedral-shaped particles, etc. Exemplarily, we present phase diagrams of hard
dumbbells, hard bowl-shaped particles, and hard superballs.

5.1.1. Hard dumbbells. The phase behaviour of hard dumbbells consisting of two fused
hard spheres of diameter σ and their centers separated by a distance L was investigated
by computer simulations in refs. [73, 74, 52, 53] as a function of the shape parameter
L∗ ≡ L/σ that defines the anisotropy of the dumbbell. Hence the model reduces to hard
spheres for L∗ = 0 and to tangent spheres for L∗ = 1. Phase diagrams of hard dumbbells
as determined from computer simulations by Vega showed a stable fluid phase at low
packing fraction and an orientationally ordered crystal phase (CP1 phase) at sufficiently
high densities. For L∗ < 0.4, a plastic crystal phase appears in the phase diagram at
intermediate densities. More recently, the phase diagram was revisited by Marechal et
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Fig. 2. – Phase diagram of hard dumbbells in reduced density ρ∗ (packing fraction φ) versus
aspect ratio L∗ ≡ L/σ representation. F denotes the fluid phase and CP1 the periodic crystal.
The aperiodic phase (aper) is stable only in a narrow region of the phase diagram. The stable
FCC type plastic crystal is denoted by filled squares, the HCP plastic crystal phase is denoted
by empty squares. The coexistence densities for L∗ < 0.9 are taken from refs. [73,74].

al., who showed that the plastic crystal with the HCP structure is more stable than the
one with the FCC structure for a large part of the stable plastic crystal regime [53]. The
revised phase diagram is displayed in the reduced density ρ∗-L∗ representation in fig. 2.
Here, the dimensionless density is defined as ρ∗ = d3N/V with d3/σ3 = 1+3L∗/2−L3/2
the volume of a dumbbell divided by that of a sphere with diameter σ. Thus, d is the
diameter of a sphere with the same volume as the dumbbell. In addition, the stability
of an orientationally disordered aperiodic crystal structure in which the spheres of the
dumbbells are on a random-hexagonal-close-packed lattice, and the dumbbells are formed
by taking random pairs of neighboring spheres is investigated. For L∗ > 0.88, the phase
diagram displays a stable aperiodic crystal phase in between the stable fluid and periodic
crystal phase regime [53].

5.1.2. Hard bowl-shaped particles. A variety of bowl-shaped colloidal particles has been
synthesized in recent years [29, 75]. The phase behaviour of such a particle shape was
studied by computer simulations as a function of the thickness (or equivalently deepness)
of the bowl. The particles are modeled as the solid of revolution of a crescent, as this
model particle captures the most important features of the colloidal bowls, a depression
and a hemispherical outer shape with a diameter σ. The shape parameter of the bowls
is defined by a reduced thickness D/σ of the bowl with D the thickness of the bowl,
such that the model reduces to infinitely thin hemispherical surfaces for D/σ = 0 and to
solid hemispheres for D/σ = 0.5. Using free-energy calculations, it was shown that the
phase diagram displays a stable isotropic phase, a columnar phase with polar order for
sufficiently deep bowls, and four exotic crystal structures for shallow bowls, i.e., IX, IB,
IX′, and fcc2 [76,77]. In the inverted crystal (IX) and the inverted braid-like crystal (IB),
the particles are stacked in columns with half of the columns flipped upside down, such
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Fig. 3. – Phase diagram of hard bowl-shaped particles in the packing fraction (φ) versus thickness
(D/σ) representation. The light-gray areas denote the coexistence regions, while the dark-gray
area indicates the forbidden region as it exceeds the maximum packing fraction of the bowls.
The stable crystal phases, IX, IX′, IB, and fcc2, and the hexagonal columnar phase “col” are
drawn schematically on the left and right of the figure. The lines are a guide to the eye.

that the rims of the bowls can interdigitate. In the IX, the columns consist of particles
that are all aligned head to toe, while in the IB phase, the columns resemble braids with
alternating tilt direction of the particles within each column. The solid hemispheres
(D = 0.5σ) display two stable crystal structures: the IX′ phase can be regarded as a

φ

Fig. 4. – Phase diagram of oblate hard spherocylinders in the packing fraction (φ) versus di-
mensionless thickness (L/D) representation as obtained by free-energy calculations. The state
points in the dark-grey area are inaccessible since they lie above the maximum close packing
line. Xaligned and Xtilted, denote the aligned and tilted crystal structures, “iso” denotes the
isotropic fluid, “nem” the nematic phase, and “col” the columnar phase. The solid lines are a
guide to the eye.
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sheared version of IX with alternating orientation of the particles and where the particles
are not organized in columns. In the paired face-centered-cubic (fcc2) phase, pairs of
hemispheres join together to form complete spheres that can rotate freely on the lattice
positions of an fcc crystal. The phase diagram is displayed in fig. 3 along with schematics
of the different phases.

5.1.3. Oblate hard spherocylinders. The phase behavior of oblate hard spherocylinders,
which serves as a model for colloidal hard platelets, was investigated using free-energy
calculations in Monte Carlo simulations. Oblate hard spherocylinders consist of a flat
cylindrical core with diameter σ and height L, and a toroidal rim, with tube diameter L.
The total diameter of the oblate hard spherocylinder is D = L + σ. The phase diagram
was mapped out as a function of the aspect ratio L/D of the particles [50]. The phase
diagram displays a stable isotropic phase, a nematic liquid crystal phase for L/D ≤ 0.12,
a columnar phase for L/D ≤ 0.3, a tilted crystal phase for L ≤ 0.45, and an aligned
crystal phase for L/D ≥ 0.45, as shown in fig. 4. The phase diagram of oblate hard
spherocylinders resembles that of hard cut spheres. However, the tilted crystal phase for
oblate hard spherocylinders has not been found for hard cut spheres [78].
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